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Abstract

This paper develops local signal detection strategies for spectral resolution of frequen
nearby tones. The problem of interest is to decide whether a received noise-corrupted and
signal is a single-frequency sinusoid or a double-frequency sinusoid. This paper presents an e
to M. Shahram and P. Milanfar (On the resolvability of sinusoids with nearby frequencies in the
ence of noise, IEEE Trans. Signal Process., to appear, available at http://www.soe.ucsc.edu/~
the case where the noise variance is unknown. A general signal model is considered where
quencies, amplitudes, phases andalso the level of the noise variance is unknown to the detector. W
derive a fundamental trade-off between SNR and the minimum detectable difference betw
frequencies of two tones, for any desired decision error rate. We also demonstrate that the alg
when implemented in a practical scenario, yields significantly better performance compared
standard subspace-based methods like MUSIC. It is also observed that the performance for
where the noise variance is unknown, is very close to that when the noise variance is known
detector.
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1. Introduction and problem setup

Resolving sinusoidal signals with nearby frequencies has been of a significant in
in array processing and in particular direction finding, where two incoherent plane w
are incident upon a linear equi-spaced array of sensors [2]. The previous works d
this area fit in two categories; some have researched and developed novel methods
gorithms (see Refs. [3,4] for a list of the related literature and Refs. [5–7] for more r
works), whereas many others have focused on the performance analysis of the de
algorithms [2,8–16]. Some common approaches in the latter group have been to d
sensitivity measure for the algorithms to the noise level [14], or to determine the “th
old” SNR at which a minimum resolvability (in statistical terms) can be obtained [2
In any event, the trade-off between resolvability and SNR has been consistently us
performance figure for spectral estimators.

We consider the signal of interest to be

s(x; δ1, δ2) = a1 sin
(
2π(fc − δ1)x + φ1

) + a2 sin
(
2π(fc + δ2)x + φ2

)
(1)

with x ∈ [−B/2,B/2], where the frequencies of sinusoids (fc − δ1 andfc + δ2) are around
a “center” frequencyfc. This center frequency can be assumed to be known or estim
beforehand by applying one of the existing spectral estimation methods. Assuming t
measured signal is corrupted by noise and sampled at rate offs, we can write it as

f (k; δ1, δ2) = s(k; δ1, δ2) + w(k) (2)

= a1 sin

(
2π(fc − δ1)

k

fs
+ φ1

)
+ a2 sin

(
2π(fc + δ2)

k

fs
+ φ2

)
+ w(k), (3)

where the integer indexk is in the rangek ∈ {−(N − 1)/2, . . . , (N − 1)/2} andN = Bfs
is the total number of samples. The termw(k) is a zero-mean Gaussian white noise proc
with unknown varianceσ 2.

The spectral representation (i.e., the discrete-time Fourier transform (DTFT)) o
signal in (3) consists of two overlapping patterns centered atfc−δ1 andfc+δ2. According
to the so-called Rayleigh criterion [10], these two peaks in the frequency domain are
resolvable if

δ1 + δ2 = 1/B. (4)

Hence for any signal with a frequency separation (δ1 + δ2 < 1/B), the main-lobe of the
Fourier transform of the (sum of) two sinusoids is located in the same DTFT bin. In
words, the two frequency components are, in the Rayleigh sense,unresolvable. This is the
scenario of interest in this paper. In the remainder of this paper, we use the phrase “
with short observation interval” to identify signals in which the values ofB, δ1, andδ2
satisfy the inequalityδ1 + δ2 < 1/B.

As we are to decide whether the received signal is a single-sinusoid (one peak
spectral domain) or double-sinusoid (two peaks in the spectral domain), the prob
resolution can be posed as the following hypothesis test
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{
H0: δ1 = 0 andδ2 = 0,

H1: δ1 > 0 or δ2 > 0,
(5)

whereH0 andH1 denote the null hypothesis (one peak is present) and alternativ
pothesis (two peaks are present), respectively. Since we consider the case whereδ1 andδ2
are unknown to the detector, (5) represents a composite (but one-sided) hypothesis
problem [17]. We treated this problem in the case where the noise varianceσ 2 was known
in [1], and the contribution of this paper consists of extending the earlier analysis
unknown noise variance case.

Almost all the previously developed techniques in this area employ the structure
second order statistics of the signal. The key assumption is that of independent uni
distributed phases of each sinusoid. Assumingφ1 andφ2 to be independent and uniform
distributed random variables in the range of[0,2π], the resulting hypothesis test from (
using the signal covariances is given by{

H0: f ∼ N (0,R0 + σ 2I),
H1: f ∼ N (0,R1 + σ 2I),

(6)

whereR0 andR1 are the autocorrelation matrices of the signals(k) in (2),

R0 = (a1 + a2)
2

2
Re

[
r(fc)rT(fc)

]
, (7)

R1 = a2
1

2
Re

[
r(fc − δ1)rT(fc − δ1)

] + a2
2

2
Re

[
r(fc + δ2)rT(fc + δ2)

]
, (8)

where Re[·] denotes the real part andr(·) is the vector form1 of

r(k;fc) = exp

(
j2πfc

k

fs

)
. (9)

For the most idealistic case where all the parameters in (7) and (8) are known to the
tor, an NP detector for (6) decidesH1 if

Tc(f) = fT[
(R1 + σ 2I)−1 − (R0 + σ 2I)−1]f > γ, (10)

where subscript “c” denotes the “completely known” case. In practice, however, sinc
the time series are available, an estimate of the autocorrelation matrix derived from t
nal samples is used. Furthermore, since finding the maximum likelihood (ML) estim
of the autocorrelation matrix is a highly complicated task, other suboptimal altern
are used. The so-called subspace methods (e.g., MUSIC) for spectral estimation ar
on the eigen-decomposition of the autocorrelation matrix into orthogonal signal and
subspaces [2–4,18–20].

Our proposed analysis is based on the model for the measured signal in (2) ins
relying on the second order statistic (i.e., covariance structure) of the signal. It is
to mention that our methodology assumes the phases of sinusoid to be determinis
known variables, whereas the subspace methods treat the phases of sinusoids as u
distributed random variables.

1 Superscript “T” in (7) and (8) denotes conjugate transpose.
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Our approach is to quantify a measure of resolution in statistical terms by address
following question: “What is the minimum separation between frequencies of two ne
tones (maximum attainable resolution) that is detectable at a particular signal-to-nois
(SNR), and for pre-specified probabilities of detection and false alarm (Pd andPf )?”

Addressing the above question will provide a fundamental performance bound
can be used to understand the effect of SNR and also other parameters on the ac
resolution in spectral analysis. Furthermore, the final computed performance limit is s
the result of employing a local detector which can be indeed used and implemen
practice. For this purpose, we put forward some comparisons between a practica
of the proposed algorithm and the MUSIC algorithm. We demonstrate that the pro
detectors yield noticeably improved performance in resolving the spectra of nearby

In our earlier work [1], we studied the problem in the case where the noise var
is known to the detector. In this paper, the case ofunknown noise variance is considere
which is perhaps a more practical scenario. The main result of the forgoing analysis
shall see, is that there is little loss in performance when the noise variance is unkno

In Section 2 we introduce our approach for the most general case, where the
tudes and phases are unequal and unknown to the detector. In this section we also
the corresponding detection strategies and characterize their performance. In Se
we present some results and comparisons of the proposed method with existing su
methods. Finally, in Section 4, we summarize the results and present some conc
remarks.

2. Detection theoretic approach

We consider the most general case of the signal model of (3), with unknown ampli
phases, and unknown frequency parameters (δ1 andδ2) and also unknown level of nois
variance (σ 2). The case of known and equal amplitudes and phases has been stu
[1] when σ 2 is known, the result of which has been shown to lead to a uniformly m
powerful test.

When two spectral peaks corresponding to the frequencies of sinusoids (fc − δ1 and
fc + δ2) are located in the same bin (below the Rayleigh limit), the range of interest fo
values ofδ1 andδ2 is small (δ1, δ2 < 1/2B). Hence, it is quite appropriate for the purpos
of our analysis to consider approximating the model of the signal around(δ1, δ2) = (0,0).
The second-order Taylor expansion of (2) about(δ1, δ2) = (0,0), with all other variables
fixed, is

s(k; δ1, δ2) ≈
2∑

i=0

αipi(k) + βiqi(k), (11)

where

pi(k) =
(

k

fs

)i

sin

(
2πfc

k

fs

)
, (12)

qi(k) =
(

k
)i

cos

(
2πfc

k
)

, (13)

fs fs
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αi = (2π)i

i!

[
a1δ

i
1 cos

(
φ1 + i

π

2

)
+ a2δ

i
2 cos

(
φ1 + i

π

2

)]
, (14)

βi = (2π)i

i!

[
a1δ

i
1 sin

(
φ1 + i

π

2

)
+ a2δ

i
2 sin

(
φ1 + i

π

2

)]
. (15)

We elect to keep terms up to order 2 of the above Taylor expansion. This gives a
accurate representation of the signal since in some cases the first-order terms (p1(k) and
q1(k)) would be very small or even would simply vanish. Rewriting (11) in vector fo
will result in

s ≈
2∑

i=0

αipi + βiqi , (16)

where

pi = [
pi(−(N − 1)/2), . . . , pi((N − 1)/2)

]T
, (17)

qi = [
qi(−(N − 1)/2), . . . , qi((N − 1)/2)

]T
. (18)

Now, the hypotheses in (5) appear in the following form:
H0: z = α0p0 + β0q0 + w,

H1: z =
2∑

i=0

αipi + βiqi + w,
(19)

wherez denotes the approximate measured signal model. Equation (19) leads to a
model for testing the parameter setθ defined as follows:

z = Hθ + w, (20)

H = [p0 | q0 | p1 | q1 | p2 | q2], (21)

θ = [α0 β0 α1 β1 α2 β2]T, (22)

whereH andθ are anN × 6 matrix, and a 6× 1 vector, respectively. The correspondi
hypotheses are{

H0: Aθ = 0, σ 2 > 0,

H1: Aθ �= 0, σ 2 > 0,
(23)

where

A =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (24)

The hypothesis test in (23) is a problem of detecting a deterministic signal with unk
parameters (θ andσ 2). The generalized likelihood ratio test (GLRT) is a well-known
proach to solving this type of “composite” hypothesis testing problem [21]. The G
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dard Neyman–Pearson (NP) likelihood ratio detector. The GLRT for (23) [21] give
following test statistic:

T = θ̂
T

AT[A(HTH)−1AT]−1Aθ̂

zT[I − H(HTH)−1HT]z > γ, (25)

whereI is the identity matrix and2

θ̂ = (HTH)−1HTz (26)

is the unconstrained maximum likelihood estimation ofθ . For any given data setz, we
decideH1 if the statistic exceeds a specified threshold,

T (z) > γ. (27)

The choice ofγ is motivated by the level of tolerable false alarm (or false-positive)
given problem, but is typically kept very low. From (25), the performance of this det
is characterized by [21]

Pf = QF4,N−6(γ ), (28)

Pd = QF ′
4,N−6(λ)(γ ), (29)

λ = 1

σ 2
θTAT[

A(HTH)−1AT]−1Aθ , (30)

whereQF4,N−6 is the right tail probability for a central F distribution with 4 numera
degrees of freedom andN −6 denominator degrees of freedom, andQF ′

4,N−6(λ) is the right
tail probability for a non-central F distribution with 4 numerator degrees of freedom
N − 6 denominator degrees of freedom, and non-centrality parameterλ. For a desiredPd
and Pf , we can compute the required value for the non-centrality parameter from
and (29). We call this value of the non-centrality parameterλ(Pf,Pd) as a function of
desired probability of detection and false alarm rate. This notation is key in illuminat
very useful relationship between the SNR and the smallest separation (i.e.,(δ1, δ2)) which
can be detected with high probability, and low false alarm rate. From (30) we can wr

σ 2 = 1

λ(Pf,Pd)
θTAT[

A(HTH)−1AT]−1Aθ . (31)

Also, by defining the output SNR as

SNR= 1

σ 2
θTHTHθ (32)

and replacing the value ofσ 2 with the right hand side of (31) the relation between
parameter setθ and the required SNR can be made explicit,

SNR= λ(Pf,Pd)
θTHTHθ

θTAT[A(HTH)−1AT]−1Aθ
. (33)

2 Note that(HTH)−1HT is the pseudo inverse ofH.
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It is instructive to simplify (33) by approximating the elements of the matrixHTH. These
approximations yield (see Appendix A for details)

HTH ≈



N

2
0 0

−N

4
µ

N3

24f 2
s

0

0
N

2

−N

4
µ 0 0

N3

24f 2
s

0
−N

4
µ

N3

24f 2
s

0 0
−N3

16
µ

−N

4
µ 0 0

N3

24f 2
s

−N3

16
µ 0

N3

24f 2
s

0 0
−N3

16
µ

N5

160f 4
s

0

0
N3

24f 2
s

−N3

16
µ 0 0

N5

160f 4
s



,

whereµ = cos(2πfc
fs

N)/sin(2πfc
fs

). To gain further insight, we consider a special case
assuminga1δ1 ≈ a2δ2, which results from a proper choice of the center frequencyfc (see
Ref. [1]), and simultaneously considering the case where the value ofφ1 is close to that
of φ2. After some algebra, replacingN/fs by B and neglecting non-dominant terms, f
smallδ1 andδ2 (i.e.,δ1, δ2 � 1/B) (33) will reduce to:

SNR≈ 45

π4

λ(Pf,Pd)

B4

(a1 + a2)
2

(a1δ
2
1 + a2δ

2
2)2

. (34)

The required SNR is minimized whenδ1 = δ2 = δ (i.e.,a1 = a2 = 1); and in this case w
have

SNR≈ 45

π4

λ(Pf,Pd)

(Bδ)4
. (35)

An important question is to consider how different this obtained performance is from
of the ideal detector, to which all the parameters (amplitudes, phases, frequencie
noise variance) are known. We first note that in this case the hypothesis test in (1
be a standard Gauss–Gauss detection problem. Also, we can further simplify the p
by seeing that the termα0p0 + β0q0 is a common known term under both hypotheses
can be removed. As a result, the following relationship can be verified for the comp
known case:

SNRid = η(Pf,Pd)
θTHTHθ

θTATAHTHATAθ
, (36)

where the subscript “id” denotes the ideal case andη(Pf,Pd) is the required deflectio
coefficient [21] computed as

η = (
Q−1(Pf) − Q−1(Pd)

)2
, (37)
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whereQ−1(·) is the inverse of the right-tail probability function for a standard Gaus
random variable (zero mean and unit variance). Comparing the expression in (33)
of (37),

SNR

SNRid
= λ(Pf,Pd)

η(Pf,Pd)

θTATAHTHATAθ

θTAT[A(HTH)−1AT]−1Aθ
(38)

we notice thatη(Pf,Pd) < λ(Pf,Pd) provided Pd > Pf . Also, It can be proved tha
AHTHAT − [A(HTH)−1AT]−1 is a positive definite matrix. As a result, as expect
SNR> SNRid always.

3. Numerical results and comparisons

We first compare the performance of the proposed detector for the unknownσ 2 case
with those of the detector for the knownσ 2 case [1] and the ideal detector (36). F
ure 1 presents the performance figures of these detectors for the case wherea1 = a2 and
δ1 = δ2 = δ (curves of 2δB versus required SNR). We observe that knowledge of the n
variance makes little difference to the performance (around 1 dB in required SNR)
worth mentioning that the estimate of the noise variance used in (25) is known to be

Fig. 1. 2δB vs required SNR for known and unknown noise variance,a1 = a2 andδ1 = δ2 = δ.
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ased [21]. Comparing the ideal (unrealizable) detector, the GLR detector in (25) re
3–5 dB more SNR to achieve the same resolvability.

As for the comparison to existing methods, we first note that for subspace dete
the phase is typically assumed to be a uniformly distributed random variable in[0,2π].
However the “required SNR” computed in Section 2 is in general a function of the pha
the sinusoids. Hence in order to compare the obtained results to that of subspace m
we carry out the following averaging for the required SNR over the possible rangeφ1

andφ2:

SNRavg= 1

4π2

2π∫
0

2π∫
0

SNRdφ1 dφ2, (39)

where subscript “avg” denotes the averaged value and the integrand (SNR) is the righ
side of (33).

Next, we simulated the behavior of the MUSIC algorithm for resolving sinusoids
nearby frequencies. In simulation of MUSIC, the signal is declared to be resolvable
output of MUSIC produces two distinct peaks within an interval around the true freq
cies (fc ± δ). The simulations for MUSIC are carried out for cases in which either a s

Fig. 2. 2δB vs required output SNR for the MUSIC algorithm and the proposed detector, unknown noise va
a1 = a2 andδ1 = δ2 = δ.
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snapshot, or multiple snapshots, are available. Naturally, we consider the output S
the latter case as the sum of SNR’s of each snapshot.

We develop two different comparison procedures. First, we compare the perform
of MUSIC against the detector in (25), where we assume that the center frequencyfc, at
which we perform the hypothesis test, is known a priori. Since this might be seen
unfair comparison, we have put forward an alternative (perhaps more practical) sc
too. In this scenario, we first seek assistance from MUSIC to estimate the center freq
(fc) and then apply the proposed detector in (25) centered at the peak estimated by M

The results of these experiments are shown in Fig. 2. First, we observe that th
posed detector significantly outperforms MUSIC in both cases (using known or esti
center frequency). More interestingly, we see that the result of the proposed detect
estimated center frequency (provided by MUSIC) is very close to the performance
same detector with known center frequency. This implies that the MUSIC algorithm
a very promising job in locating the center frequency (i.e., the candidate location whe
can perform a refinement step using our proposed approach). Intuitively, the reason
behavior is that for the case where a high probability of resolution (0.99) is conside
fairly high value of SNR should be provided. This value of SNR will effectively guara
a condition under which the MUSIC algorithm will produce the peak in its spectrum w
the range of[fc − δ, fc + δ]. This observation is essentially in agreement with what
been observed in the past about the stability of MUSIC for single-sinusoid signals.

4. Conclusion

The problem of interest in this paper has been to establish a statistical analysis of
able spectral resolution and to propose its associated detection algorithm. We formu
problem as a hypothesis test, the aim of which is to distinguish whether the received
contains a single-tone or double-tone. We have considered the most general case w
amplitudes, frequencies and phases of sinusoids and also the value of noise varianc
known to the detector. This paper is different and more general than [1] in that it as
σ 2 is unknown.

By utilizing a quadratic approximation, we in fact carried out the analysis in the
text of locally optimal detectors, and developed corresponding detection strategie
performance figure of resolution has been quantified by the following practical que
“What is the minimum detectable frequency difference between two sinusoids at a
signal-to-noise ratio?”

We clearly observed that noise variance being unknown has little effect on the det
performance. This is a useful observation, since in practice the variance is often un
to the receiver.

Also, the proposed locally optimal detectors yield significantly improved dete
of very nearby frequencies, as compared to the existing subspace methods. In te
implementing the suggested detection algorithm, we merely need to estimate the
frequency. Fortunately, as we confirmed by some experiments, this task can be very
tively performed by using one of the myriad of existing methods for spectral estim
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and then running the proposed detector at the estimated peak. The performance o
detector is nearly identical to that of the detector with a known center frequency.

Appendix A. Computing the energy terms

In this appendix, we explain the general process for the approximate computation
energy terms. We will utilize the following identities for the calculation:

L∑
k=0

xk = 1− xL+1

1− x
, (A.1)

L∑
k=0

kpxk =
p∑

m=1

xm ∂m

∂xm

(
1− xL+1

1− x

)
, (A.2)

∑
k

kp+1 sin(xk)cos(xk) = 1

2

∂

∂x

∑
k

kp sin2(xk). (A.3)

Instead of showing all the calculations, for the sake of brevity we discuss, as an ex
the calculation of the termhT

0h0:

hT
0h0 = 4

(N−1)/2∑
k=−(N−1)/2

sin2
(

2πfc

fs
k

)

=
(N−1)/2∑

k=−(N−1)/2

−
[

exp

(
j

2πfc

fs
k

)
− exp

(
−j

2πfc

fs
k

)]2

=
(N−1)/2∑

k=−(N−1)/2

2− exp

(
j

4πfc

fs
k

)
− exp

(
−j

4πfc

fs
k

)

= 2N − 2
1− exp(j 2πfc

fs
(N + 1))

1− exp(j 4πfc
fs

)
− 2

1− exp(−j
2πfc
fs

(N + 1))

1− exp(−j
4πfc
fs

)
+ 2

= 2N + 2− 2
1− cos(4πfc

fs
) + cos(2πfc

fs
(N − 1)) − cos(2πfc

fs
(N + 1))

1− cos(4πfc
fs

)

= 2N − 2
sin(2πfc

fs
N)

sin(2πfc
fs

)︸ ︷︷ ︸
C

. (A.4)

Since sin(x) � 1 − | 2
π
x − 1| for 0 � x � π , and 2πfc

fs
< π , by upper and lower boundin

the numerator and the denominator of|C|, respectively, we have

|C| = 2

∣∣∣∣sin(2πfc
fs

N)

sin(2πfc )

∣∣∣∣ � 2

sin(2πfc )
� 2

1− |4fc − 1| . (A.5)

fs fs fs
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2–2881.

rocess.

E Trans.

double
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6–2157.
roach,

) (1991)
Thus for the range ofε � 2fc/fs � 1− ε (representing the range offs from just above the
Nyquist rate (2fc) to 1/ε times the Nyquist rate), we will have|C| < 1/ε and therefore for
ε < 5/N

hT
0h0 ≈ 2N. (A.6)

A similar approach can be followed to compute other energy terms.
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